Skip to main content
guest
Join
|
Help
|
Sign In
appliedmath
Home
guest
|
Join
|
Help
|
Sign In
Wiki Home
Recent Changes
Pages and Files
Members
AREA FORMULAS
square
= a 2
rectangle
= ab
parallelogram
= bh
trapezoid
= h/2 (b1 + b2)
circle
=
pi
r 2
ellipse
=
pi
r1 r2
Examples
Square: The area formula of a square is area= a^2.
Both side lenghts of the square is 9.
To find the area you go (area=9^2) or (area=9 sqared).
Therefore the area of a square is 81 square units.
Rectangle: The area formula of a rectangle is area = lw, (length times the width)
If your length is 5 and width is 6
To find the area you go (area=5*6)
Therefore the area is 30 square units.
Parallelogram: The area formula for parallelogram is area= bh, (base times the height).
If your base is 9 and the height is 5.
To find the area you go area=(9*5).
Therefore the area is 45 sqaure units.
Trapezoid: The area formula for a trapezoid is area= (b1+b2)/2*h, ( base1+base2 divided by 2 times the height).
If base1 is 10 and base 2 is 5 and the height is 9.
To find the area you go area=(10+5/2*9).
Therefore the area is 67.5 square units.
Circle: The area formula for a circle is area=(pi)r^2), (pie)(r squared)
If the radius of the circle is 12.
To find the area you go area=(pi)(12^2).
Therefore the area of a circle is 452.16 square units.
Ellipse The area formula for a circle is (pi)(r1*r2), (pie)(times radius1 times radius2)
If radius1 is 5 and radius2 is 10.
To find the area you go area=(pi)(5*10).
Therefore the area of an ellipse is 157 square units
The Pythagorean Theorem
Edit
0
4
…
1
Tags
trigonometry
Notify
RSS
Backlinks
Source
Print
Export (PDF)
<html><head><title></title></head>
<body>
<h1 align="center">Proof of the Theorem</h1>
<ol type="I"><a href="
http://www.cut-the-knot.org/pythagoras/index.shtml%7C
**http://">cut-the-knot.org (tonns of info.</a></li>
<h1 align="center">Java Applets</h1>
<ol type="I">
<li><a href="
http://sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Pythagoras/pythagoras.html%
">sunsite.ubc.ca</a></li>
<li><a href="
http://www.ies.co.jp/math/java/geo/pythasvn/pythasvn.html%
">I like this one, I like puzzles</a></li>
<li><a href="
http://oneweb.utc.edu/~Christopher-Mawata/geom/geom7.htm
">I think this one is the easiest to understand</a></li>
</ol>
<h1 align="center">Pythagorean Triples</h1>
<ol type="I">
<li><a href="
http://www.math.uic.edu/~fields/puzzle/triples.html%7C
">math.uic.edu</a></li>
<li><a href="
http://www.cut-the-knot.org/pythagoras/pythTriple.shtml
">cut-the-knot.org</a></li>
</ol>
</body>
</html>
Javascript Required
You need to enable Javascript in your browser to edit pages.
help on how to format text
Turn off "Getting Started"
Home
...
Loading...
<body>
<h1 align="center">Proof of the Theorem</h1>
<ol type="I"><a href="http://www.cut-the-knot.org/pythagoras/index.shtml%7C**http://">cut-the-knot.org (tonns of info.</a></li>
<h1 align="center">Java Applets</h1>
<ol type="I">
<li><a href="http://sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Pythagoras/pythagoras.html%">sunsite.ubc.ca</a></li>
<li><a href="http://www.ies.co.jp/math/java/geo/pythasvn/pythasvn.html%">I like this one, I like puzzles</a></li>
<li><a href="http://oneweb.utc.edu/~Christopher-Mawata/geom/geom7.htm">I think this one is the easiest to understand</a></li>
</ol>
<h1 align="center">Pythagorean Triples</h1>
<ol type="I">
<li><a href="http://www.math.uic.edu/~fields/puzzle/triples.html%7C">math.uic.edu</a></li>
<li><a href="http://www.cut-the-knot.org/pythagoras/pythTriple.shtml">cut-the-knot.org</a></li>
</ol>
</body>
</html>